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Abstract

This paper presents an Uncertainty Quantification (UQ) challenge focusing
on key aspects of model calibration, sensitivity analysis, uncertainty reduc-
tion, and reliability-based design in the presence of aleatory and epistemic
uncertainty.
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1. Introduction

NASA missions often involve the development of new vehicles and sys-
tems that must be designed to operate in harsh domains with a wide ar-
ray of operating conditions. These missions involve high-consequence and
safety-critical systems for which quantitative data is either very sparse or
prohibitively expensive to collect. Limited heritage data may exist, but is
also usually sparse and may not be directly applicable to the system of in-
terest, making UQ extremely challenging. NASA modeling and simulation
standards require estimates of uncertainty and descriptions of any processes
used to obtain these estimates. The NASA Langley Research Center has
developed a UQ challenge problem in an effort to focus a community of re-
searchers towards common goals. While the problem formulation is written in
a discipline-independent framework, the underlying application is consistent
with the complexities of realistic systems.
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The dynamic system at the core of this challenge problem is highly rele-
vant to a wide variety of systems faced by the dynamics systems and control
communities. The key attributes of this challenge problem were chosen to be
representative of the analysis and design tasks required to model and control
flexible structures subject to uncertainty. Concrete applications embody-
ing this framework are aircraft gust alleviation, aeroelastic control, flutter
suppression, and spacecraft precision pointing. Key features of underlying
system are: a computational model identified and validated using limited
data, uncertain models parameters and boundary conditions resulting from
poorly-known subsystem interconnections, and the need to suppress unde-
sirable oscillations of a flexible structure by means of a feedback controller
with a non-collocated sensor/actuator pair.

The computational model and relevant data can be downloaded from:
https://uqtools.larc.nasa.gov/nasa-uq-challenge-problem-2020/. Each partic-
ipating team must first register using this website.

2. Uncertainty Classification

This challenge problem adopts the generally accepted classification of
uncertainty referred to as aleatory and epistemic [3], [4], [1]. Aleatory uncer-
tainty (also called irreducible or stochastic) is caused by inherent variation
or randomness. As such, aleatoric parameters are often modeled as random
variables. In contrast, epistemic uncertainty is caused by lack of knowledge
in the true value of a parameter. Therefore, epistemic uncertainty is not an
inherent property of the system, but instead it represents the state of knowl-
edge of the analyst. In the context of this challenge, an epistemic variable
can take on any fixed value within a bounded set. According to its physi-
cal origin, the value of a parameter can be either fixed (e.g., the mass of a
specific element produced by a manufacturing process) or varying (e.g., the
mass of any element that can be produced by a manufacturing process). The
physical origin of a parameter as well as the knowledge we have about it must
be used to create an Uncertainty Model (UM) for it. Intervals, fuzzy sets,
random variables, probability boxes (a.k.a. pboxes) [2], etc., are commonly
used classes of UMs.

Because most models, especially those characterizing uncertainty, are im-
perfect; the possibility of improving them always exists. A reduction of the
uncertainty in an epistemic variable is attained by reducing the size of the
set where the true value of such a variable is expected to be. This reduc-
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tion can be attained by performing additional experiments or doing better
computational simulations.

3. Framework

A computational model of a physical system will be used to evaluate and
improve its reliability. Denote by δ ∈ Rnδ a parameter of the model whose
value is uncertain, and by θ ∈ Rnθ a design variable to be prescribed by
the analyst. The parameter δ is comprised of elements of a and e, where
a ∈ Rna and e ∈ Rne are aleatory and epistemic variables respectively. The
UM for a will be denoted as a ∼ fa, where1 fa is a joint density supported
in the set A. In contrast, the UM for e will be denoted as e ∼ E, where
E is a hyper-rectangular set. Hence, the UM of δ is fully prescribed by the
pair 〈fa, E〉. In this challenge the functional form of fa and the center and
diagonal of E are to be chosen by the respondents. A variable that depends
on both epistemic and aleatory variables is fully characterized by a pbox.2

The system of interest is modeled as a set of interconnected subsystems.
However, the uncertain parameter δ is concentrated onto a single subsystem.
This subsystem is modeled by the function y(a, e, t), where y : Rna × Rne ×
[0, T ] → R and t is time. The integrated system is modeled by z (a, e, θ, t),
where z : Rna×Rne×Rnθ× [0, T ]→ R2. Hence, the output of the subsystem
is a function of time, whereas the output of the integrated system are two

1The probability density function, and the cumulative distribution function of u with
parameter p will be denoted as fu(u; p) and Fu(u; p) respectively.

2Consider u(a, e, θ), where u : Rna × Rne × Rnθ → R, a ∼ fa, e ∼ E and θ is a
parameter. When θ is fixed, u is fully prescribed by the pbox Bu(u; θ). This pbox is
obtained by associating to each u the set of CDF values Fu(u; e) corresponding to all
values of e in E, i.e., Bu(u; θ) = {Fu = Fu(u; e),∀e ∈ E}. This interval-valued function
can be written as Bu(u; θ) =

[
Fu(u), Fu(u)

]
, where the CDFs Fu and Fu are the lower

and upper pbox boundaries respectively. Each member of the family of infinitely many
CDFs lies between them, and no tighter containing functions exist. The pbox boundaries
are not pbox members in general. An inner approximation to Bu can be calculated from
n samples of a and m samples of e by using

Bn,mu (u; θ) =
1

n

 min
i=1,...m

n∑
j=1

1u(a(j),e(i),θ)≤u, max
i=1,...m

n∑
j=1

1u(a(j),e(i),θ)≤u

 ⊆ Bu(u; θ),

where 1(·) is the indicator function.
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functions of time. Each of these functions will be given as a discrete time
history, e.g., y(t) = [y(0), y(dt), . . . , y(nt dt)] where nt dt = T .

Respondents will be asked to find a design point θ that yields a fast-
decaying response z1(t) while keeping z2(t) below a given threshold. These
design objectives will be cast as a set of reliability requirements. These re-
quirements are fully prescribed by the performance functions g(a, e, θ), where
g : Rna ×Rne → Rng . The system will be regarded as requirement compliant
when g(a, e, θ) < 0. For fixed values of θ and e, the set of a points where
g < 0 is called the safe domain, whereas its complement set is called the
failure domain. The worst-case performance function, defined as

w(a, e, θ) = max
i=1,...ng

gi(a, e, θ), (1)

enables defining the safe and failure domains in terms of a single inequality,
i.e., the safe domain is given by the a points where w(a, e, θ) < 0. When the
values of e and θ are fixed, and a ∼ fa; the worst-case performance function
is given by the random variable w ∼ fw(w; e, θ) and the failure probability is
1−Fw(0; e, θ). In contrast, when θ is fixed, e ∼ E, and a ∼ fa, the worst-case
performance function is given by the pbox w ∼ Bw(w; θ) and the probability
of failure varies in the [1− Fw(0; θ), 1− Fw(0; θ)] range.

An overview of the main goals of this challenge is as follows:

• Create an UM of δ according to observations of the subsystem.

• Choose a limited number of epistemic variables to refine.

• Perform a reliability analysis of a given design point.

• Seek a design point θ with improved reliability.

• Improve the UM of δ and θ according to observations of the integrated
system.

• Improve θ by accepting a small risk.

4. Problem Statement

The particular reliability requirements of interest are introduced next.
g1(a, e, θ) < 0 is needed for the system to be stable, g2 < 0 with

g2 = max
t∈[T/2,T ]

|z1(a, e, θ, t)| − 0.02, (2)
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for the settling time of z1 to be sufficiently fast, and g3 < 0 with

g3 = max
t∈[0,T ]

|z2(a, e, θ, t)| − 4, (3)

for the energy consumption to be acceptable. These ng = 3 requirements
define competing design objectives: design points θ that contract the fail-
ure domain corresponding to one requirement might also expand the failure
domain corresponding to another.

The challenge is divided into the six subproblems described below. The
numerical setup is na = 5, ne = 4, nθ = 9, ng = 3, T = 5, nt = 5000,
A0 = [0, 2]na , E0 = [0, 2]ne , n1 = 100, n2 = 100 and r̂ = 0.05. The dataset,
the baseline design, the computational models, and means to evaluate g can
be downloaded from the website provided below.

A. Model Calibration & UQ of the Subsystem

In this subproblem we seek to characterize the parameters of the subsystem
according to a limited number of observations.

A1) Given the data sequence D1 = {y(i)(t)} for i = 1, . . . n1, create an UM
for δ such that a ∼ fa for a ∈ A ⊆ A0, and e ∼ E ⊆ E0.

A2) Explain the rationale that led you to choose a particular distribution
class for a. Why is that distribution better than any other? Evaluate
the degree of dependency among the parameters of the identified fa.
Explain the rationale that led you to chose the geometry of E. Evaluate
the extent by which the identified UM underfits/overfits the data. How
does the value of n1 impact your answers?

B. Uncertainty Reduction

In this subproblem we seek to determine which epistemic variables are dom-
inant.

B1) Rank the epistemic parameters according to their ability to improve the
predictive ability of the computational model of the subsystem.

B2) Determine 0 ≤ k ≤ 4 uncertainty reductions to make3. Each of such
reductions is prescribed by an epistemic variable and a refinement type.

3Another opportunity for refinement will be available in Subproblem E. The total num-
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Two refinement types are available: one focuses on lowering the upper
limit of the bounding interval while the other one focuses on increasing
the lower limit of the bounding interval4. Ask the NASA hosts for the
refined UMs. Denote the reduced epistemic space E1.

B3) Update the UM of δ and the parameter ranking such that e ∼ E ⊆ E1.

C. Reliability Analysis of Baseline Design

In this subproblem we seek to evaluate the reliability of a given design point
θbaseline according to the current UM.

C1) Evaluate the range of the failure probability for each individual require-
ment,

Ri(θ) =

[
min
e∈E

P[gi(a, e, θ) ≥ 0],max
e∈E

P[gi(a, e, θ) ≥ 0]

]
, (4)

for i = 1, . . . ng, where P[·] is the probability operator.

C2) Evaluate the range of the failure probability for all requirements

R(θ) =

[
min
e∈E

P [w(a, e, θ) ≥ 0] ,max
e∈E

P [w(a, e, θ) ≥ 0]

]
. (5)

C3) Rank the epistemic uncertainties according to the contraction of R(θ)
that might result from their reduction.

C4) Identify representative realizations of δ ∈ A×E having a comparatively
large likelihood near the failure domain. Use these points to characterize
qualitatively different transitions to failure. Show the corresponding time
responses of the integrated system.

C5) Evaluate the severity of each individual requirement violation, as mea-

ber of reductions a group can request shall not exceed 4. The same epistemic parameter
can be refined multiple times.

4For example, the refinements {e+1 } and {e−3 } will focus on decreasing the upper limit of
E in the e1 dimension and increasing the lower limit of E in the e3 dimension respectively.
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sured by

si(θ) = max
e∈E

E[gi|gi ≥ 0]P[gi ≥ 0], (6)

for i = 1, . . . ng, where E[·|·] is the conditional expectation.

D. Reliability-Based Design

In this subproblem we seek to improve the system’s reliability by identifying
a new design point.

D1) Find a reliability-optimal design point θnew. The respondents should
choose a meaningful optimality criterion along with a computational vi-
able approach to pursue θnew.

D2) Perform the analysis of θnew described in Subproblem C for the current
UM.

E. Model Update and Design Tuning

In this subproblem we seek to improve the UM and the design by using
observations of the integrated system corresponding to θnew.

E1) Provide θnew to the NASA hosts, who will give you the corresponding
data sequence D2 = {z(i)(t)} for i = 1, . . . n2.

E2) Use this sequence to update the UM and tune your design.

E3) Determine which 4−k refinements to make. Each refinement is prescribed
by an epistemic variable and a refinement type (see B2). Ask the NASA
hosts for the corresponding UMs. Denote the reduced epistemic space
E2.

E4) Update the UM of δ and further improve the design such that e ∼ E ⊆
E2. Denote the resulting design point θfinal.

E5) Perform the analysis of θfinal described in Subproblem C for the current
UM.

E6) Compare θbaseline, θnew and θfinal using the metrics in (4), (5) and (6).
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F. Risk-Based Design

In this subproblem we seek a design point that accounts for most of the
remaining epistemic space. The portion to be neglected has r% of the volume
of E, where r ∈ [0, 100) is called the risk.

F1) Propose a metric to quantify the gain, `, resulting from taking the risk
r = r̂.

F2) Find a design point that maximizes `(r̂) and denote it as θr̂%risk. Explain
the process used to choose the portion of E being ignored.

F3) Compare θfinal and θr̂%risk using the figures of merit above. Is it worth
taking the r̂ risk?

F4) Evaluate `(r, θfinal) and `(r, θr̂%risk) for a few values in r ∈ [0, 10] to de-
termine an acceptable level of risk (if any).

5. Software

The computational models of the subsystem and of the integrated sys-
tem as well as the data will be given as MATLAB R© files. These files, namely
yfun.m (the subsystem), zfun.m (the integrated system), gfun.m (the perfor-
mance functions), baseline-design.mat (the baseline design) and D1.mat

(n observations of the response of the subsystem), can be downloaded from
https://uqtools.larc.nasa.gov/nasa-uq-challenge-problem-2020/. The use of
the functions, which require the Control Systems Toolbox to run, is exem-
plified in test.m.
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